chemicalchecker.tool.targetmate.nonconformist.icp.OobCpRegressor

class OobCpRegressor(nc_function, condition=None)[source]

Bases: IcpRegressor

Methods

calibrate

Calibrate conformal predictor based on underlying nonconformity scorer.

fit

Fit underlying nonconformity scorer.

get_params

Get parameters for this estimator.

get_problem_type

predict

Predict the output values for a set of input patterns.

set_params

Set the parameters of this estimator.

calibrate(x, y, increment=False)[source]

Calibrate conformal predictor based on underlying nonconformity scorer.

Parameters

xnumpy array of shape [n_samples, n_features]

Inputs of examples for calibrating the conformal predictor.

ynumpy array of shape [n_samples, n_features]

Outputs of examples for calibrating the conformal predictor.

incrementboolean

If True, performs an incremental recalibration of the conformal predictor. The supplied x and y are added to the set of previously existing calibration examples, and the conformal predictor is then calibrated on both the old and new calibration examples.

Returns

None

fit(x, y)[source]

Fit underlying nonconformity scorer.

Parameters

xnumpy array of shape [n_samples, n_features]

Inputs of examples for fitting the nonconformity scorer.

ynumpy array of shape [n_samples]

Outputs of examples for fitting the nonconformity scorer.

Returns

None

get_params(deep=True)

Get parameters for this estimator.

Parameters

deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

paramsdict

Parameter names mapped to their values.

predict(x, significance=None)

Predict the output values for a set of input patterns.

Parameters

xnumpy array of shape [n_samples, n_features]

Inputs of patters for which to predict output values.

significancefloat

Significance level (maximum allowed error rate) of predictions. Should be a float between 0 and 1. If None, then intervals for all significance levels (0.01, 0.02, …, 0.99) are output in a 3d-matrix.

Returns

pnumpy array of shape [n_samples, 2] or [n_samples, 2, 99}

If significance is None, then p contains the interval (minimum and maximum boundaries) for each test pattern, and each significance level (0.01, 0.02, …, 0.99). If significance is a float between 0 and 1, then p contains the prediction intervals (minimum and maximum boundaries) for the set of test patterns at the chosen significance level.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters

**paramsdict

Estimator parameters.

Returns

selfestimator instance

Estimator instance.