chemicalchecker.tool.targetmate.nonconformist.icp.IcpRegressor
- class IcpRegressor(nc_function, condition=None)[source]
Bases:
BaseIcp
,RegressorMixin
Inductive conformal regressor.
Parameters
- nc_functionBaseScorer
Nonconformity scorer object used to calculate nonconformity of calibration examples and test patterns. Should implement
fit(x, y)
,calc_nc(x, y)
andpredict(x, nc_scores, significance)
.
Attributes
- cal_xnumpy array of shape [n_cal_examples, n_features]
Inputs of calibration set.
- cal_ynumpy array of shape [n_cal_examples]
Outputs of calibration set.
- nc_functionBaseScorer
Nonconformity scorer object used to calculate nonconformity scores.
See also
IcpClassifier
References
Examples
>>> import numpy as np >>> from sklearn.datasets import load_boston >>> from sklearn.tree import DecisionTreeRegressor >>> from nonconformist.base import RegressorAdapter >>> from nonconformist.icp import IcpRegressor >>> from nonconformist.nc import RegressorNc, AbsErrorErrFunc >>> boston = load_boston() >>> idx = np.random.permutation(boston.target.size) >>> train = idx[:int(idx.size / 3)] >>> cal = idx[int(idx.size / 3):int(2 * idx.size / 3)] >>> test = idx[int(2 * idx.size / 3):] >>> model = RegressorAdapter(DecisionTreeRegressor()) >>> nc = RegressorNc(model, AbsErrorErrFunc()) >>> icp = IcpRegressor(nc) >>> icp.fit(boston.data[train, :], boston.target[train]) >>> icp.calibrate(boston.data[cal, :], boston.target[cal]) >>> icp.predict(boston.data[test, :], significance=0.10) ... array([[ 5. , 20.6], [ 15.5, 31.1], ..., [ 14.2, 29.8], [ 11.6, 27.2]])
Methods
Calibrate conformal predictor based on underlying nonconformity scorer.
Fit underlying nonconformity scorer.
Get parameters for this estimator.
get_problem_type
Predict the output values for a set of input patterns.
Set the parameters of this estimator.
- calibrate(x, y, increment=False)
Calibrate conformal predictor based on underlying nonconformity scorer.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for calibrating the conformal predictor.
- ynumpy array of shape [n_samples, n_features]
Outputs of examples for calibrating the conformal predictor.
- incrementboolean
If
True
, performs an incremental recalibration of the conformal predictor. The suppliedx
andy
are added to the set of previously existing calibration examples, and the conformal predictor is then calibrated on both the old and new calibration examples.
Returns
None
- fit(x, y)
Fit underlying nonconformity scorer.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for fitting the nonconformity scorer.
- ynumpy array of shape [n_samples]
Outputs of examples for fitting the nonconformity scorer.
Returns
None
- get_params(deep=True)
Get parameters for this estimator.
Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns
- paramsdict
Parameter names mapped to their values.
- predict(x, significance=None)[source]
Predict the output values for a set of input patterns.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of patters for which to predict output values.
- significancefloat
Significance level (maximum allowed error rate) of predictions. Should be a float between 0 and 1. If
None
, then intervals for all significance levels (0.01, 0.02, …, 0.99) are output in a 3d-matrix.
Returns
- pnumpy array of shape [n_samples, 2] or [n_samples, 2, 99}
If significance is
None
, then p contains the interval (minimum and maximum boundaries) for each test pattern, and each significance level (0.01, 0.02, …, 0.99). If significance is a float between 0 and 1, then p contains the prediction intervals (minimum and maximum boundaries) for the set of test patterns at the chosen significance level.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters
- **paramsdict
Estimator parameters.
Returns
- selfestimator instance
Estimator instance.