chemicalchecker.tool.targetmate.nonconformist.icp.BaseIcp
- class BaseIcp(nc_function, condition=None)[source]
Bases:
BaseEstimator
Base class for inductive conformal predictors.
Methods
Calibrate conformal predictor based on underlying nonconformity scorer.
Fit underlying nonconformity scorer.
Get parameters for this estimator.
Set the parameters of this estimator.
- calibrate(x, y, increment=False)[source]
Calibrate conformal predictor based on underlying nonconformity scorer.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for calibrating the conformal predictor.
- ynumpy array of shape [n_samples, n_features]
Outputs of examples for calibrating the conformal predictor.
- incrementboolean
If
True
, performs an incremental recalibration of the conformal predictor. The suppliedx
andy
are added to the set of previously existing calibration examples, and the conformal predictor is then calibrated on both the old and new calibration examples.
Returns
None
- fit(x, y)[source]
Fit underlying nonconformity scorer.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for fitting the nonconformity scorer.
- ynumpy array of shape [n_samples]
Outputs of examples for fitting the nonconformity scorer.
Returns
None
- get_params(deep=True)
Get parameters for this estimator.
Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns
- paramsdict
Parameter names mapped to their values.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters
- **paramsdict
Estimator parameters.
Returns
- selfestimator instance
Estimator instance.