Source code for chemicalchecker.util.transform.gaussianize

"""Transform data so that it is approximately normally distributed.

This code written by Greg Ver Steeg, 2015.
"""

import numpy as np
from scipy.special import lambertw
from scipy.stats import kurtosis, norm, rankdata, boxcox
from scipy.optimize import fmin  # TODO: Explore efficacy of other opt. methods
import sklearn

np.seterr(all='warn')


[docs]class Gaussianize(sklearn.base.TransformerMixin): """ Gaussianize data using various methods. Conventions ---------- This class is a wrapper that follows sklearn naming/style (e.g. fit(X) to train). In this code, x is the input, y is the output. But in the functions outside the class, I follow Georg's convention that Y is the input and X is the output (Gaussianized) data. Parameters ---------- tol : float, default = 1e-4 max_iter : int, default = 100 Maximum number of iterations to search for correct parameters of Lambert transform. strategy : str, default='lambert' Possibilities are 'lambert'[1], 'brute'[2] and 'boxcox'[3]. Attributes ---------- coefs_ : list of tuples For each variable, we have transformation parameters. For Lambert, e.g., a tuple consisting of (mu, sigma, delta), corresponding to the parameters of the appropriate Lambert transform. Eq. 6 and 8 in the paper below. References ---------- [1] Georg Goerg. The Lambert Way to Gaussianize heavy tailed data with the inverse of Tukey's h transformation as a special case Author generously provides code in R: https://cran.r-project.org/web/packages/LambertW/ [2] Valero Laparra, Gustavo Camps-Valls, and Jesus Malo. Iterative Gaussianization: From ICA to Random Rotations [3] Box cox transformation and references: https://en.wikipedia.org/wiki/Power_transform """ def __init__(self, tol=1.22e-4, max_iter=100, verbose=False, strategy='lambert'): self.tol = tol self.max_iter = max_iter self.strategy = strategy self.coefs_ = [] # Store tau for each transformed variable self.verbose = verbose
[docs] def fit(self, x, y=None): """Fit a Gaussianizing transformation to each variable/column in x.""" x = np.asarray(x) if len(x.shape) == 1: x = x[:, np.newaxis] elif len(x.shape) != 2: print ("Data should be a 1-d list of samples to transform or a 2d array with samples as rows.") if self.strategy == 'lambert': if self.verbose: print("Gaussianizing with Lambert method") for x_i in x.T: self.coefs_.append( igmm(x_i, tol=self.tol, max_iter=self.max_iter)) elif self.strategy == 'brute': for x_i in x.T: # TODO: In principle, we could store parameters to do a # quasi-invert self.coefs_.append(None) elif self.strategy == 'boxcox': for x_i in x.T: self.coefs_.append(boxcox(x_i)[1]) else: raise NotImplementedError return self
[docs] def transform(self, x): """Transform new data using a previously learned Gaussianization model.""" x = np.asarray(x) if len(x.shape) == 1: x = x[:, np.newaxis] elif len(x.shape) != 2: print( "Data should be a 1-d list of samples to transform or a 2d array with samples as rows.") if x.shape[1] != len(self.coefs_): print("%d variables in test data, but %d variables were in training data." % ( x.shape[1], len(self.coefs_))) if self.strategy == 'lambert': return np.array([w_t(x_i, tau_i) for x_i, tau_i in zip(x.T, self.coefs_)]).T elif self.strategy == 'brute': return np.array([norm.ppf((rankdata(x_i) - 0.5) / len(x_i)) for x_i in x.T]).T elif self.strategy == 'boxcox': return np.array([boxcox(x_i, lmbda=lmbda_i) for x_i, lmbda_i in zip(x.T, self.coefs_)]).T else: raise NotImplementedError
[docs] def inverse_transform(self, y): """Recover original data from Gaussianized data.""" if self.strategy == 'lambert': return np.array([inverse(y_i, tau_i) for y_i, tau_i in zip(y.T, self.coefs_)]).T elif self.strategy == 'boxcox': return np.array([(1. + lmbda_i * y_i) ** (1. / lmbda_i) for y_i, lmbda_i in zip(y.T, self.coefs_)]).T else: print('Inversion not supported for this gaussianization transform.') raise NotImplementedError
[docs] def qqplot(self, x, prefix='qq'): """Show qq plots compared to normal before and after the transform.""" from matplotlib import pylab from scipy.stats import probplot y = self.transform(x) for i, (x_i, y_i) in enumerate(zip(x.T, y.T)): probplot(x_i, dist="norm", plot=pylab) pylab.savefig(prefix + '_%d_before.png' % i) pylab.clf() probplot(y_i, dist="norm", plot=pylab) pylab.savefig(prefix + '_%d_after.png' % i) pylab.clf()
[docs]def w_d(z, delta): # Eq. 9 if delta < 1e-6: return z return np.sign(z) * np.sqrt(np.real(lambertw(delta * z ** 2)) / delta)
[docs]def w_t(y, tau): # Eq. 8 return tau[0] + tau[1] * w_d((y - tau[0]) / tau[1], tau[2])
[docs]def inverse(x, tau): # Eq. 6 u = (x - tau[0]) / tau[1] return tau[0] + tau[1] * (u * np.exp(u * u * (tau[2] * 0.5)))
[docs]def igmm(y, tol=1.22e-4, max_iter=100): # Infer mu, sigma, delta using IGMM in Alg.2, Appendix C if np.std(y) < 1e-4: return np.mean(y), np.std(y).clip(1e-4), 0 delta0 = delta_init(y) tau1 = (np.median(y), np.std(y) * (1. - 2. * delta0) ** 0.75, delta0) for k in range(max_iter): tau0 = tau1 z = (y - tau1[0]) / tau1[1] delta1 = delta_gmm(z) x = tau0[0] + tau1[1] * w_d(z, delta1) mu1, sigma1 = np.mean(x), np.std(x) tau1 = (mu1, sigma1, delta1) if np.linalg.norm(np.array(tau1) - np.array(tau0)) < tol: break else: if k == max_iter - 1: print( "Warning: No convergence after %d iterations. Increase max_iter." % max_iter) return tau1
[docs]def delta_gmm(z): # Alg. 1, Appendix C delta0 = delta_init(z) def func(q): u = w_d(z, np.exp(q)) if not np.all(np.isfinite(u)): return 0. else: k = kurtosis(u, fisher=True, bias=False)**2 if not np.isfinite(k) or k > 1e10: return 1e10 else: return k res = fmin(func, np.log(delta0), disp=0) return np.around(np.exp(res[-1]), 6)
[docs]def delta_init(z): gamma = kurtosis(z, fisher=False, bias=False) with np.errstate(all='ignore'): delta0 = np.clip( 1. / 66 * (np.sqrt(66 * gamma - 162.) - 6.), 0.01, 0.48) if not np.isfinite(delta0): delta0 = 0.01 return delta0
if __name__ == '__main__': # Command line interface # Sample commands: # python gaussianize.py test_data.csv import csv import sys import os import traceback from optparse import OptionParser, OptionGroup parser = OptionParser(usage="usage: %prog [options] data_file.csv \n" "It is assumed that the first row and first column of the data CSV file are labels.\n" "Use options to indicate otherwise.") group = OptionGroup(parser, "Input Data Format Options") group.add_option("-c", "--no_column_names", action="store_true", dest="nc", default=False, help="We assume the top row is variable names for each column. " "This flag says that data starts on the first row and gives a " "default numbering scheme to the variables (1,2,3...).") group.add_option("-r", "--no_row_names", action="store_true", dest="nr", default=False, help="We assume the first column is a label or index for each sample. " "This flag says that data starts on the first column.") group.add_option("-d", "--delimiter", action="store", dest="delimiter", type="string", default=",", help="Separator between entries in the data, default is ','.") parser.add_option_group(group) group = OptionGroup(parser, "Transform Options") group.add_option("-s", "--strategy", action="store", dest="strategy", type="string", default="lambert", help="Strategy.") parser.add_option_group(group) group = OptionGroup(parser, "Output Options") group.add_option("-o", "--output", action="store", dest="output", type="string", default="gaussian_output.csv", help="Where to store gaussianized data.") group.add_option("-q", "--qqplots", action="store_true", dest="q", default=False, help="Produce qq plots for each variable before and after transform.") parser.add_option_group(group) (options, args) = parser.parse_args() if not len(args) == 1: print("Run with '-h' option for usage help.") sys.exit() # Load data from csv file filename = args[0] with open(filename, 'rU') as csvfile: reader = csv.reader(csvfile, delimiter=" ") # options.delimiter) if options.nc: variable_names = None else: variable_names = next(reader)[(1 - options.nr):] sample_names = [] data = [] for row in reader: if options.nr: sample_names = None else: sample_names.append(row[0]) data.append(row[(1 - options.nr):]) print (len(data), data[0]) try: for i in range(len(data)): data[i] = map(float, data[i]) X = np.array(data, dtype=float) # Data matrix in numpy format except: print ("Incorrect data format.\nCheck that you've correctly specified options \ such as continuous or not, \nand if there is a header row or column.\n \ Run 'python gaussianize.py -h' option for help with options.") traceback.print_exc(file=sys.stdout) sys.exit() ks = [] for xi in X.T: ks.append(kurtosis(xi)) print (np.mean(np.array(ks) > 1)) from matplotlib import pylab pylab.hist(ks, bins=30) pylab.xlabel('excess kurtosis') pylab.savefig('excess_kurtoses_all.png') pylab.clf() pylab.hist([k for k in ks if k < 2], bins=30) pylab.xlabel('excess kurtosis') pylab.savefig('excess_kurtoses_near_zero.png') print (np.argmax(ks)) pdict = {} for k in np.argsort(- np.array(ks))[:50]: pylab.clf() p = np.argmax(X[:, k]) pdict[p] = pdict.get(p, 0) + 1 pylab.hist(X[:, k], bins=30) pylab.xlabel(variable_names[k]) pylab.ylabel('Histogram of patients') pylab.savefig('high_kurtosis/' + variable_names[k] + '.png') print (pdict) # 203, 140 appear three times. sys.exit() out = Gaussianize(strategy=options.strategy) y = out.fit_transform(X) with open(options.output, 'w') as csvfile: writer = csv.writer(csvfile, delimiter=options.delimiter) if not options.nc: writer.writerow([""] * (1 - options.nr) + variable_names) for i, row in enumerate(y): if not options.nr: writer.writerow([sample_names[i]] + list(row)) else: writer.writerow(row) if options.q: print('Making qq plots') prefix = options.output.split('.')[0] if not os.path.exists(prefix + '_q'): os.makedirs(prefix + '_q') out.qqplot(X, prefix=prefix + '_q/q')