chemicalchecker.tool.targetmate.tmsetup.ModelSetup
- class ModelSetup(is_classifier, **kwargs)[source]
Bases:
TargetMateClassifierSetup
,TargetMateRegressorSetup
Set up a TargetMate classifier
- Parameters:
algo (str) – Base algorithm to use (see /model configuration files) (default=random_forest).
model_config (str) – Model configurations for the base classifier (default=vanilla).
weight_algo (str) – Model used to weigh the contribution of an individual classifier. Should be fast. For the moment, only vanilla classifiers are accepted (default=naive_bayes).
ccp_folds (int) – Number of cross-conformal prediction folds. The default generator used is Stratified K-Folds (default=10).
min_class_size (int) – Minimum class size acceptable to train the classifier (default=10).
min_class_size_active (int) – Minimum active class size acceptable to train the classifier, if not stated, uses min_class_size (default=None).
min_class_size_inactive (int) – Minimum inactive class size acceptable to train the classifier, if not stated, uses min_class_size (default=None).
active_value (int) – When reading data, the activity value considered to be active (default=1).
inactive_value (int) – When reading data, the activity value considered to be inactive. If none specified, then any value different that active_value is considered to be inactive (default=None).
inactives_per_active (int) – Number of inactive to sample for each active. If None, only experimental actives and inactives are considered (default=100).
metric (str) – Metric to use to select the pipeline (default=”auroc”).
universe_path (str) – Path to the universe. If not specified, the default one is used (default=None).
naive_sampling (bool) – Sample naively (randomly), without using the OneClassSVM (default=False).
biased_universe (float) – Proportion of closer molecules to sample as putative inactives (default = 0).
Methods
Store model in compressed format for persistance
cpu_count
create_models_path
directory_tree
Execute the any method on the configured HPC.
Load previously stored TargetMate instance.
Load a base model
load_data
prepare_data
prepare_for_ml
read_data
Redefine path of a TargetMate instance.
Redefine path of a TargetMate instance.
repath_predictions_by_fold_and_set
Redefine path of a TargetMate instance.
reset_path_bases
Reset predictions path
Save TargetMate instance
save_data
Wait for jobs to finish
Delete temporary data
- compress_models()
Store model in compressed format for persistance
- func_hpc(func_name, *args, **kwargs)
Execute the any method on the configured HPC.
- Parameters:
args (tuple) – the arguments for of the function method
kwargs (dict) – arguments for the HPC method.
- static load(models_path)
Load previously stored TargetMate instance.
- load_base_model(destination_dir, append_pipe=False)
Load a base model
- repath_bases_by_fold(fold_number, is_tmp=True, reset=True, only_train=False)
Redefine path of a TargetMate instance. Used by the Validation class.
- repath_predictions_by_fold(fold_number, is_tmp=True, reset=True)
Redefine path of a TargetMate instance. Used by the Validation class.
- repath_predictions_by_set(is_train, is_tmp=True, reset=True)
Redefine path of a TargetMate instance. Used by the Validation class.
- reset_path_predictions(is_tmp=True)
Reset predictions path
- save()
Save TargetMate instance
- waiter(jobs, secs=3)
Wait for jobs to finish
- wipe()
Delete temporary data