chemicalchecker.tool.targetmate.nonconformist.nc.RegressorNc
- class RegressorNc(model, err_func=<chemicalchecker.tool.targetmate.nonconformist.nc.AbsErrorErrFunc object>, normalizer=None, beta=0)[source]
Bases:
BaseModelNc
Nonconformity scorer using an underlying regression model.
Parameters
- modelRegressorAdapter
Underlying regression model used for calculating nonconformity scores.
- err_funcRegressionErrFunc
Error function object.
- normalizerBaseScorer
Normalization model.
- betafloat
Normalization smoothing parameter. As the beta-value increases, the normalized nonconformity function approaches a non-normalized equivalent.
Attributes
- modelRegressorAdapter
Underlying model object.
- err_funcRegressionErrFunc
Scorer function used to calculate nonconformity scores.
See also
ProbEstClassifierNc, NormalizedRegressorNc
Methods
Fits the underlying model of the nonconformity scorer.
Get parameters for this estimator.
Constructs prediction intervals for a set of test examples.
Calculates the nonconformity score of a set of samples.
Set the parameters of this estimator.
- fit(x, y)
Fits the underlying model of the nonconformity scorer.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for fitting the underlying model.
- ynumpy array of shape [n_samples]
Outputs of examples for fitting the underlying model.
Returns
None
- get_params(deep=True)
Get parameters for this estimator.
Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns
- paramsdict
Parameter names mapped to their values.
- predict(x, nc, significance=None)[source]
Constructs prediction intervals for a set of test examples.
Predicts the output of each test pattern using the underlying model, and applies the (partial) inverse nonconformity function to each prediction, resulting in a prediction interval for each test pattern.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of patters for which to predict output values.
- significancefloat
Significance level (maximum allowed error rate) of predictions. Should be a float between 0 and 1. If
None
, then intervals for all significance levels (0.01, 0.02, …, 0.99) are output in a 3d-matrix.
Returns
- pnumpy array of shape [n_samples, 2] or [n_samples, 2, 99]
If significance is
None
, then p contains the interval (minimum and maximum boundaries) for each test pattern, and each significance level (0.01, 0.02, …, 0.99). If significance is a float between 0 and 1, then p contains the prediction intervals (minimum and maximum boundaries) for the set of test patterns at the chosen significance level.
- score(x, y=None)
Calculates the nonconformity score of a set of samples.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for which to calculate a nonconformity score.
- ynumpy array of shape [n_samples]
Outputs of examples for which to calculate a nonconformity score.
Returns
- ncnumpy array of shape [n_samples]
Nonconformity scores of samples.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters
- **paramsdict
Estimator parameters.
Returns
- selfestimator instance
Estimator instance.