chemicalchecker.tool.targetmate.nonconformist.nc.ClassifierNc
- class ClassifierNc(model, err_func=<chemicalchecker.tool.targetmate.nonconformist.nc.MarginErrFunc object>, normalizer=None, beta=0)[source]
Bases:
BaseModelNc
Nonconformity scorer using an underlying class probability estimating model.
Parameters
- modelClassifierAdapter
Underlying classification model used for calculating nonconformity scores.
- err_funcClassificationErrFunc
Error function object.
- normalizerBaseScorer
Normalization model.
- betafloat
Normalization smoothing parameter. As the beta-value increases, the normalized nonconformity function approaches a non-normalized equivalent.
Attributes
- modelClassifierAdapter
Underlying model object.
- err_funcClassificationErrFunc
Scorer function used to calculate nonconformity scores.
See also
RegressorNc, NormalizedRegressorNc
Methods
Fits the underlying model of the nonconformity scorer.
Get parameters for this estimator.
Calculates the nonconformity score of a set of samples.
Set the parameters of this estimator.
- fit(x, y)
Fits the underlying model of the nonconformity scorer.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for fitting the underlying model.
- ynumpy array of shape [n_samples]
Outputs of examples for fitting the underlying model.
Returns
None
- get_params(deep=True)
Get parameters for this estimator.
Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns
- paramsdict
Parameter names mapped to their values.
- score(x, y=None)
Calculates the nonconformity score of a set of samples.
Parameters
- xnumpy array of shape [n_samples, n_features]
Inputs of examples for which to calculate a nonconformity score.
- ynumpy array of shape [n_samples]
Outputs of examples for which to calculate a nonconformity score.
Returns
- ncnumpy array of shape [n_samples]
Nonconformity scores of samples.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters
- **paramsdict
Estimator parameters.
Returns
- selfestimator instance
Estimator instance.